Коррозия меди
Коррозия меди – это ее разрушение под воздействием окружающей среды.
Медь и ее сплавы нашли широкое применение во многих отраслях промышленности. Это связано с высокой коррозионной стойкостью данного металла, теплопроводностью, электропроводностью. Медь отлично обрабатывается механически, паяется.
Значительная коррозия меди наблюдается в окислительных кислотах, аэрированных растворах, которые содержат NH4+, CN- и другие ионы, способные с медью образовывать комплексы.
Коррозия меди в воде
Скорость коррозии меди в воде во многом зависит от наличия на поверхности оксидных пленок.
В быстро движущихся водных растворах и воде медь подвергается такому виду разрушения, как ударная коррозия. Скорость протекания ударной коррозии меди сильно зависит от количества растворенного кислорода. Если вода сильно аэрирована – ударная коррозия меди протекает интенсивно, если же обескислорожена – разрушение незначительно. Коррозия меди в аэрированной воде усиливается с уменьшением рН, увеличением концентрации ионов хлора. Скорость коррозии меди в воде зависит от климатической зоны. В тропиках скорость разрушения несколько выше.
Особенностью меди, омываемой морской водой, можно считать то, что она является одним из немногих металлов, которые не подвержены обрастанию микроорганизмами. Ионы меди для них губительны.
С чистой меди очень часто изготавливают трубопроводы для подачи в дома воды. Они надежны, служат очень долгое время. При наличии в воде растворенной угольной и других кислот медь понемногу корродирует, а продукты коррозии меди окрашивают сантехническое оборудование. Если вода, проходящая через медные трубы контактирует с железом, алюминием или оцинкованной сталью – то коррозию этих металлов значительно усиливается. Ионы меди осаждаются на поверхности этих металлов, образуя коррозионные гальванические элементы.
Чтоб исключить вредное влияние воды с медных труб на другие металлы используют луженую медь. Внутреннюю часть медного трубопровода покрывают оловом. Оловянное покрытие должно быть безпористым, во избежание возникновения гальванического элемента (олово по отношению к меди является катодом).
Коррозия луженой меди
Луженая медь отличается превосходной коррозионной стойкостью. Луженая медь отлично служит даже под воздействием дождя, града, снега, не чувствительна к перепаду температуры окружающей среды. Атмосферная коррозия луженой меди весьма незначительна. Оловянное покрытие по отношению к меди является анодом, т.к. имеет более электроотрицательный потенциал. Если на нем нет никаких изъянов (пор, трещин, царапин), через которые медь контактирует с атмосферой – оно прослужит очень долго. Если же дефекты покрытия присутствуют – атмосферная коррозия луженой меди протекает по следующим реакциям:
А: Sn - 2e→ Sn2+ - окисление олова;
К: 2 H2О + O2 + 4e → 4 OH- - восстановление меди.
2 Sn + 2 H2О + O2 → 2 Sn(OH)2
Качественное оловянное покрытие продлевает срок службы луженой меди до 100 лет и более.
Атмосферная коррозия меди
В атмосферных условиях медь отличается высокой коррозионной стойкостью. На сухом воздухе поверхность меди почти не меняется. А при контакте с влажным воздухом образуется нерастворимая пленка, состоящая с продуктов коррозии меди типа CuCO3•Cu(OH)2.
2Cu + H2O + CO2 + O2 → CuCO3•Cu(OH)2.
В зависимости от состава среды и еще многих факторов на медной поверхности в атмосфере сначала образуется очень тонкая защитная пленка, состоящая с оксидов меди и ее чистой закиси. Время образования этой пленки может достигать нескольких лет. Поверхность немного темнеет, становится коричневатой. Иногда пленка может быть почти черного цвета (во многом зависит от состава коррозионной среды). После образования оксидного слоя на поверхности начинают скапливаться соли меди, имеющие зеленоватый оттенок. Образующийся оксид меди и соли называют еще патиной. Цвет патины колеблется от светло коричневого, до черного и зеленого. Зависит от качества обработки поверхности, состава самого металла и среды, времени контакта с коррозионной средой (от внутренних и внешних факторов). Закись меди – красно-коричневого цвета, окись – черного. Голубые, зеленые, синие и другие оттенки патины обуславливаются различными медными минералами (сульфаты, карбонаты, хлориды и др.). Патина по отношению к основному металлу нейтральна, т.е. не оказывает на медь вредного влияния (кроме хлористой меди). Соли и оксиды, формирующие патину, нерастворимы в воде и обладают естественными декоративными, защитными свойствами по отношению к поверхности меди.
Присутствие во влажном воздухе углекислого газа приводит к образованию на поверхности смеси, которую еще называют малахитом. Сульфиды, хлориды, находящиеся в воздухе, разрушают малахит. Это ускоряет атмосферную коррозию меди.
Коррозия меди в почве
Коррозия меди в почве сильно зависит от значения рН грунта. Чем грунт щелочнее либо кислее, тем быстрее проходит коррозия меди в почве. Менее сильное влияние оказывает аэрация, влажность грунта. При сильном насыщении почвы микроорганизмами усиливается коррозия меди и ее сплавов. Это объясняется тем, что некоторые из них в процессе своей жизнедеятельности вырабатывают сероводород, который разрушает защитную оксидную пленку.
Продукты почвенной коррозии меди и ее сплавов по составу более сложны, чем при атмосферной коррозии и отличаются слоистой структурой.
Если медное изделие пролежало в почве очень долгое время – оно могло полностью превратиться в рыхлую светло-зеленую массу, состоящую с продуктов коррозии меди. При недолгом нахождении изделия в почве может наблюдаться только небольшой слой патины, который легко снять механически.
Медь устойчива в таких средах:
- атмосфера;
- морская вода;
- горячая и холодная пресная вода;
- в определенных условиях, находясь в контакте с галогенами;
- неокислительных кислотах, горячих и холодных деаэрированных разбавленных растворах H3PO4, H2SO4, уксусной кислоты.
Медь неустойчива в таких средах:
- сера, сероводород, некоторые другие соединения серы;
- окислительные кислоты, аэрированные неокислительные (также угольная), горячий, холодный концентрат H2SO4,
Cu + 2H2SO4 → CuSO4 + SO2↑ + 2H2O – горячий концентрат,
Cu + H2SO4 → CuO + SO2↑ + H2O – холодный концентрат;
- растворы окислительных солей тяжелых металлов (Fe2(SO4)3, FeCl3);
- аэрированных водах, водных растворах быстро движущихся, агрессивных водах (с низким содержанием ионов магния, кальция, высоким – кислорода, углекислого газа);
- амины, NH4OH (содержащим кислород).